Keystone has a long history of supporting the Downstream industry. Keystone’s extensive resume for Downstream projects includes both small and large projects, such as: Design of a New Alkylation Unit (ISBL & OSBL) and Owner’s Engineer role for a new Halogen Acid Production Furnace (HAPF) Project. Projects range in size from $10k to $200MM (total installed cost).
The project consisted of the installation of three temporary steam boilers, one deaerator with BFW pumps, a blowdown vessel, CEMS units, demineralized water processing trailer and storage, wastewater storage, and transfer pumps. Approximately 10,000 linear feet of pipe was installed. Medium voltage, low voltage, and control power systems were installed. The systems were controlled via local PLCs on each piece of equipment and terminated at a central processing unit. A battery limit access platform was included in the scope. Keystone provided engineering and design services.
The project consisted of installing of a new Reactor, Air Preheater, Feedstock Preheater, Waste Heat Boiler, Cooling Water System, and Vent Scrubber at a carbon black facility. Process piping for reactor was tied into to the existing blower and bag filter systems. Reactor utility piping was interfaced with existing facility utility system piping systems at various locations throughout facility. Multi-level Structures were implemented with for support of associated utility and process piping requirements along with operations and maintenance access platforms to equipment and instrumentation. Project also included interface with pipe stress analysis and incorporation of stress requirements to Structural design. Keystone project execution team included Civil, Structural, Mechanical, Electrical, and Instrumentation engineering discipline support.
To support facilities associated with the Centralized Storage, Keystone provided project management, engineering, and design FEED services. The scope included the installation of temporary storage and stabilization capabilities for the Eagle Ford Region to act as a surge for the Condensate Trunkline. Additionally, the project involved future expansion capabilities for an additional storage tank and vapor recovery to gather the flash gas. The stabilization capabilities were necessary to get RVP to an acceptable level for sales contract. The design criteria associated with the scope included a design storage capacity of 30,000 BBL and a design facility average flowrate of 120,000 BOPD.
Keystone provided project management and detailed engineering for the OSBL portion of restarting the coke conveyor unit at a refinery. Keystone’s scope included performing a 3D laser scan and assessing the existing structural steel and foundations which previously supported a 24” wide conveyor and providing detailed design for all necessary upgrades to support the installation of a new 36” wide conveyor in its place.
Additionally, Keystone provided detailed civil/structural design for a new coke crusher at the north end of the conveyor, as well as detailed electrical and instrumentation engineering.
Keystone provided project management, engineering, and design services for the Lake Boeuf Grand Coteau Facility design to support the addition of two new wells and working over the existing Well #1. The new wells required a full facility to produce, separate, store, and sell the oil and gas production.
The scope of work for the new facility design included well flowline rated for SITP of the well (<10,000 psig) for Well #1, well flowline rated for SITP of the well (<15,000 psig) for Well #2 and #3, line heater with line heater fuel gas scrubber, slug catcher, HP and LP separator, fuel gas/instrument gas scrubber, oil heater treater, glycol dehydration package, amine unit for CO2 removal, dewpoint control unit, oil storage tanks, three 500 BBL water storage tanks, one spare storage (slop) tank, tank recirculation/offloading pump skid, HP flare scrubber and pump, LP and HP flare, and LP flare liquid blowcase.
Keystone provided engineering and design services to evaluate the sizing and hydraulics of relief valves at a refinery in Northwest, Louisiana. The PSV assessment included 404 PSVs and 31 total units. The scope of work included site visit per unit for data collection, the design basis for applicable scope in each unit, API 521 calculation for each PSV reviewed, a summary report including unit limitations, and an updated model of the relief system in Visual Flare.
Keystone provided engineering support to perform an existing mezzanine analysis to determine if it can support the new loading from a vertical accumulator vessel. The scope of work included a structural analysis model of the mezzanine with new loading from the vessel, determining if the mezzanine's structural integrity is sufficient to handle the additional loading, and drawings for modifications to the mezzanine to handle the new loading.
Keystone provided engineering, design, and construction support for a significant process upgrade at the refinery. The multi-discipline project added new SulfaTreat technology designed to remove Hydrogen Sulfide (H2S) from the continuous flare system. A highly accelerated schedule was vital to meet newly issued federal regulations from the Environmental Protection Agency (EPA). The arduous 15-week project schedule showcased one of Keystone’s greatest strengths– the ability to be responsive and rapidly assemble an elite project team.
Keystone provided procurement support in addition to civil/structural, process/mechanical, electrical, instrumentation, and controls/automation engineering. The highly experienced team was able to engineer innovative solutions to save time and keep the project on schedule. The owner and the construction contractor commended Keystone for producing all deliverables on-time or early and doing so with a remarkably high level of quality.
Keystone provided multi-discipline engineering and design services for a major project to install a $125MM new Alkylation Unit. The design basis of the new Alkylation Unit involved utilizing an existing decommissioned unit at another site. Nine pieces of equipment at that site were refurbished and reused for this project, including a refrigerant compressor, contactors, and six pressure vessels. One reboiler/heater, three towers, ten tanks, 11 heat exchangers, 21 drums, and 49 pumps were specified, purchased new, and installed. The additional connected electrical load required an expansion of the existing electrical substation including 800 new instruments.
Additionally, the project required new cooling towers and instrument air compressors since the existing facilities did not have adequate capacity. An existing LPG Truck Loading Rack required relocation and demolition to provide adequate spacing for the new unit.
Keystone provided project management, engineering, and design services for a New Change House at a food grade chemical manufacturing facility. The design included a new 40’x50’ metal building with a 4’ walkway on three sides, a divide for a men’s and woman’s side, and a dry and wet area with showers and restroom facilities. Keystone’s scope of work involved a complete drawing package that included plans for the site prep, plans and details for the foundation of the new building, plans and schedules for all mechanical and plumbing items, and plans and details for the layout of the exterior and interior building sections.
Keystone performed multi-discipline engineering, project management, and design services to restart an ethylene cracker located in Sulphur, LA. Keystone’s scope involved moving propylene, CC4, and pyrolysis gasoline from the facility. Keystone designed a new railcar loadout system with a control building and truck loadout station to supplement the existing infrastructure.
The design featured two multi-product loadouts, four propylene loadouts, and one driver-interfaced truck loadout station. Keystone designed a new railway pipe rack that connects existing storage and transfer pumps to the new railcar loading stations and extends to the truck loading area. The facility design included a new control building, housing the PLC and HMI control systems, offices, break room, and washroom.
Additionally, the engineering scope included refurbishing/modifying the flare and relief systems, existing utilities, I&E, and interconnecting piping for new and existing equipment. Keystone performed PHA, LOPA, and SIL studies on all systems.
To support an increase in the Sour Water System's capacity, Keystone provided project management, engineering, and design services for the FEL 3 and detailed design phases of the project. The new system design included a capacity of 120 GPM sour water charge and 40 GPM turndown case.
The scope of work for the new Sour Water System Unit included sour water feed pumps, sour water feed/product exchangers, stripper tower, pump around pumps, overhead cooler, sour water reboiler, tempered water pumps, and a sump pump. Additionally, the new unit tied into steam, instrument air, and power systems.
Keystone provided project management, engineering, and design services for the MDH Hydrotreater NOx Reduction Project for a refinery in Southeast, Louisiana. The project included the retrofitting of the reactor charge heater and the product fractionator heater, which are part of the middle distillate hydrotreater (MDH), to reduce NOx emissions.
The scope of this project included replacing existing burners with ultra-low NOx burners (ULNBs) for each heater, including necessary modifications to heater floor and burner fuel gas piping, adding convection coils to each heater, installing one new CEMS system, main fuel emergency shutdown skids and O2/combustible analyzers.
Keystone provided the project management, civil/structural design, and mechanical design for all Phase III and Phase IV activities. The Phase III scope also included enough documentation to prepare a total installed cost estimate of + 10%.
Keystone provided a FEED study and detailed engineering for replacing the 900lb steam header on two existing boilers at an alumina refinery. The project scope of work included detailed design piping and civil construction packages. Additionally, the construction packages included tie point drawings, demo drawings, and piping plans, elevations, and details.
Keystone provided front-end engineering design (FEED), detailed design, and procurement support services for the addition of lube oil additives to an existing mixing vessel. The project included laser scanning, evaluation of the tank (internals, mixer, and circulation rates), pipe supports, and PRV bladder calculation reports. The detailed design work scope involved installing a new 40-gallon storage and delivery unit and upgrading the current system with a new 70 GPM pump. Additionally, the work scope included installing new piping, spectacle blinds, additional product sampling points, associated foundations/curbing, associated controls for maximum operability/safety, and the relocation of an existing safety shower.
Keystone provided Phase II, III, and IV engineering and design services for a project to replace existing feedstock piping. The project goal was to evaluate three different options for routing and supporting the new pipe runs. For each option, Keystone provided a Total Installed Cost (TIC) estimate, total downtime, and future expansion needs.
Saving considerable costs and providing minimal downtime, the option chosen included a new elevated modular pipe rack located in the tank dike area. The rack design included vertical loops doubling as pipe bridges to accommodate pipe stress due to high-temperature service and to allow for equipment traffic in the tank farm. The rack modules, ranging from 40’-56’ in length, were fully welded in the shop and galvanized with the piping installed, steam traced, and insulated before shipping to the facility. Each module was lifted in place with piping jumpers welded between modules.
Keystone’s multi-discipline team received high praise for this project. The Client response below is an excellent reminder of how Keystone personnel always strive to exceed expectations.
“Very good project. Everything went well. Thanks to Keystone, the engineering was spot on.”